Intraosseous Administration of Freeze-dried Plasma in the Prehospital Setting

Mor Rittblat MD¹, Lilach Gavish PhD², Avishai M. Tsur MD MHA¹357, Shaul Gelikas MD MBA¹4, Avi Benov MD MHA¹6, and Amir Shlaifer MD¹

¹Trauma and Combat Medicine Branch, Surgeon General’s Headquarters, Israel Defense Forces, Ramat Gan, Israel
²Department of Military Medicine, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
Departments of ³Medicine B and ⁴Internal Medicine E, and ⁵Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel
⁶Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
⁷Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

ABSTRACT

Background: Freeze dried plasma (FDP) is a commonly used replacement fluid in the prehospital setting when blood products are unavailable. It is normally administered via a peripheral intravenous (PIV) line. However, in severe casualties, when establishing a PIV is difficult, administration via intraosseous vascular access is a practical alternative, particularly under field conditions.

Objectives: To evaluate the indications and success rate of intraosseous administration of FDP in casualties treated by the Israel Defense Forces (IDF).

Methods: A retrospective analysis of data from the IDF-Trauma Registry was conducted. It included all casualties treated with FDP via intraosseous from 2013 to 2019 with additional data on the technical aspects of deployment collected from the caregivers of each case.

Results: Of 7223 casualties treated during the study period, intravascular access was attempted in 1744; intraosseous in 87 of those. FDP via intraosseous was attempted in 15 (0.86% of all casualties requiring intravascular access). The complication rate was 73% (11/15 of casualties). Complications were more frequent when the event included multiple casualties or when the injury included multiple organs. Of the 11 failed attempts, 5 were reported as due to slow flow of the FDP through the intraosseous apparatus. Complications in the remaining six were associated with deployment of the intraosseous device.

Conclusions: Administration of FDP via intraosseous access in the field requires a high skill level.

KEY WORDS: bone injection gun, freeze dried plasma (FDP), intraosseous vascular access, peripheral intravenous (PIV) line

Trauma is the primary cause of death among young people [1]. Hemorrhage and hypovolemic shock are the most common preventable causes of death among trauma casualties [2,3]. The critical elements in hemorrhagic shock treatment are bleeding control and fluid resuscitation, yet not all fluids are the same. Numerous protocols were used over the years, and the current understanding is that transfusion of blood products, in ratios similar to whole blood (1:1:1 of plasma, platelets, and packed red blood cells [pRBC]), is the preferable approach to significant blood loss [4,5].

Freeze dried plasma (FDP) is now a commonly used replacement fluid in the prehospital setting [6-10] particularly in remote military arenas where standard blood products are far from reach [11-13]. FDP is normally administered via a peripheral intravenous (PIV) line. However, in severe casualties, when establishing a PIV is delayed or difficult, the intraosseous approach may provide a relatively easy alternative for rapid access to a non-collapsible vascular compartment [14,15]. Studies have shown that infusion via intraosseous is a safe and effective means of delivering resuscitation fluids such as crystalloids, colloids, and blood products, to the intramedullary space and systemic circulation [16-18]. When an intraosseous needle is placed in the intramedullary space, it reaches a highly vascularized anatomical site. This space can serve as a direct channel to the systemic circulation even when the casualty presents with hypovolemic shock. The intraosseous approach is reported to have a shorter insertion time and higher success rate than PIV or central venous catheterization [19-23]. The main caveat of the intraosseous approach is that it requires specific expertise and experience [22].

FDP via intraosseous was reported previously in a single case report [23]. To determine the usefulness of this approach, we performed a retrospective analysis of all cases from the Israel Defense Force-Trauma Registry (IDF-TR) in which FDP via intraosseous was used. In this study we characterized the injuries in which FDP via intraosseous was required and determined the feasibility, complications, and success rate of this approach.
PATIENTS AND METHODS

ETHICS CONSIDERATIONS

The study was approved by the IDF-Medical Corps (IDF-MC) institutional review board (approval number: No. 2018–1948) and written according to the STROBE reporting guidelines.

STUDY DESIGN

This retrospective analysis of data from the IDF-TR [26] included all casualties treated with FDP and intraosseous at the point of injury (POI) by the IDF Advance Life support (ALS) providers between 2013 and 2019.

The IDF-TR is a prehospital military trauma registry containing data on all trauma casualties (civilian or military) cared for by military medical teams since 1997 as part of the Trauma and Combat Medicine Branch (TCMB) in the IDF-MC. Data were collected by medical providers at the POI using established casualty cards configured for recording data regarding location, mechanism, treatment, casualty status, and means and destination of evacuation. These data were subsequently entered into the IDF-TR within a few hours of injury by the treating physician or paramedic [24].

MATERIALS

Intraosseous access

Intraosseous access was attempted with two devices in these cases:

- BIG (WaisMed Ltd., Houston, TX, USA) is an automatic, spring-loaded, disposable injector that drives a 43.3 mm long cannulated, 15-gauge needle through the cortex of the bone enabling a direct passage for fluid transfusion with connectors for standard PIV tubing.
- EZ-IO (Teleflex Medical, Research Triangle Park, NC, USA) is an integrated driller with a 25 mm long stylet-tipped 15-gauge needle. In the latter, the bone marrow is accessed by drilling a hollow needle to a preset depth.

INTRAOSSEOUS ACCESS PROTOCOL

The IDF TCMB protocol guidelines regarding intraosseous access include any casualties who meet the criteria for venous access and previously had two failed attempts at peripheral line insertion by an ALS provider or three failed attempts overall. The preferable intraosseous placement site is the proximal tibia.

RESUSCITATION PROTOCOL

Clinical practice guidelines (CPG) of the IDF TCMB concerning remote damage-control resuscitation by ALS (physicians and paramedics) providers are shown in Figure 1. Any casualty with a penetrating injury of the trunk or of a transition zone requires PIV access and immediate administration of 1 gram of tranexamic acid (TXA). In addition, regardless of the mechanism of injury, any patient assessed to be in severe hemorrhagic shock (heart rate more than 130 bpm or lack of radial pulse or systolic blood pressure less than 90 mmHg) receives TXA and one unit of FDP.

FREEZE-DRIED PLASMA

The fluid replacement used was the LyoPlas N-w (German Red Cross, DRK Blutspendedienst West, Zentralbereich Plasma, Hagen, Germany), according to the instructions of the manufacturer [7]. In brief, the lyophilized plasma product is reconstituted with 200 ml of pre-packed sterile water in a glass bottle and mixed manually for 2 to 3 minutes until the powder appears to be dissolved.

The FDP reconstituted solution is immediately infused IO to the trauma casualties in the field setting with gravity force being the only pressure gradient affecting the infusion rate.

DATA ANALYSIS

The data collected from the IDF-TR included demographics (age, sex, ethnicity), pulse, blood pressure, Glasgow Coma Scale score, injury type (location, mechanism), treatments administered at POI, details of the caregiver, mode of evacuation, and number of casualties in the event. In addition, all primary caregivers who administered FDP via intraosseous access were questioned individually, and the data were tabulated regarding the nature and source of any difficulties encountered.

RESULTS

Between 2013 to 2019, 7223 casualties were treated by the IDF medical team. Intravascular access (PIV or intraosseous) was attempted in 1744. Of these, intraosseous access was attempted in 87, of which 67 (77%) succeeded. Of the 87 attempts at intraosseous access, FDP was the infused fluid in 15 representing less than one percent (0.86%) of the entire group of 1744 casualties requiring fluid replacement. Complications were encountered in 11 of the 15 cases (73%) where FDP was the fluid that was infused by intraosseous access.

All casualties were classified as urgent for evacuation due to their injuries, and the majority were subsequently evacuated by the aeromedical evacuation unit (9 of 15 [60%]). The casualties were young and predominantly male (age 28 ± 12 years of age, 73% male) [Table 1]. The mechanism of injury was a penetrating wound (gunshot or fragments) in most cases (12 of 15 [80%]), with the rest being blunt force trauma. In addition, the majority of these casualties (11 of 15 [73%]) presented with multi-system injury with multiple organs affected. The casualties were administered live saving procedures according to the indications and of the injury and surrounding circumstances including combat application tourniquet (CAT).
First
Stop all compressible bleedings!

Definite superficial injury?
Penetrating injury ruled out, patient is fully alert and insignificant mechanism of injury

Yes
No need for IV access

No

Establish IV access. Do not delay evacuation
In case of penetrating torso injury –
administer 1 gram of TXA (provided less than 3 hours from injury) via IV push

Profound shock?
Mental deterioration/combative patient
Radial pulse > 130 bpm or absent
Systolic BP < 90 mmHg

Yes

1st Choice
pRBC is available: administer pRBC with FDP in 1:1 ratio

2nd Choice
pRBC is not available: administer FDP unit.

If not already given, administer 1 gram of TXA via slow IV push (5 minutes, not in the IV connected to the FDP)

Reassess patient: still profound shock?
Mental deterioration/Combative patient
Radial pulse > 130 bpm or absent

Yes

pRBC is available: administer pRBC with FDP in 1:1 ratio
pRBC is not available: administer another FDP unit

· monitor for side effects

No

Stop fluid resuscitation
Slow Hartmann drip to keep IV access functional
Reassess every 5 to 10 minutes

No

Maintain casualty core temp
(n=2), airway management (endotracheal intubation [n=7], cricothyroidotomy [n=1], or the insertion of laryngeal mask airway [n=1]), and chest decompression by needle and/or thora-
costomy tube (needle as a bridge until thoracostomy) (n=5).
All were treated with 1 gram of TXA (according to IDF TCMB
CPG) [Table 2].
Of the 15 cases treated with FDP via intraosseous, 14 were
administered the fluid using the BIG apparatus through the
proximal tibia, and one was infused using the EZ-IO through
the proximal humerus. The complications encountered (11 of
15) were more frequent when the event included multiple casu-
alties, and when the injury involved multiple organs [Table 2].
The caregivers who encountered difficulties reported that, in
5 of 11 cases, the reason for the difficulty was insufficient
flow of the FDP due to the consistency of the fluid which re-
quired applying active pressure with a syringe.

Table 1. Casualty characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (n=15) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>11 (73%)</td>
</tr>
<tr>
<td>Female</td>
<td>4 (27%)</td>
</tr>
<tr>
<td>Mechanisms of injury</td>
<td></td>
</tr>
<tr>
<td>Gunshot</td>
<td>4 (27%)</td>
</tr>
<tr>
<td>Fragmental</td>
<td>6 (40%)</td>
</tr>
<tr>
<td>Penetrating</td>
<td>2 (13%)</td>
</tr>
<tr>
<td>Other (e.g., burn, internal, blast)</td>
<td>3 (20%)</td>
</tr>
<tr>
<td>Advance life support provider</td>
<td></td>
</tr>
<tr>
<td>Physician</td>
<td>7 (47%)</td>
</tr>
<tr>
<td>Paramedic</td>
<td>8 (53%)</td>
</tr>
</tbody>
</table>

Table 2. Success/failure of interosseous administration of freeze-dried plasma according to characteristics of injury and first-line treatment

<table>
<thead>
<tr>
<th>Variable</th>
<th>FDP via intraosseous administration</th>
<th>Total (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Success (n=4)</td>
<td>Failure (n=11)</td>
</tr>
<tr>
<td>Number of casualties per event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Multiple</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>FDP units per casualty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 unit</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>2 units</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Live-saving treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airway manipulation</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Chest drainage</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CAT</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Airway + CAT</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>None</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Anatomical site of injury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-system</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Chest</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Torso</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Limbs</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
CAT = combat application tourniquet, FDP = freeze dried plasma

DISCUSSION

The administration of FDP via the intraosseous approach is a
relatively easy alternative for rapid access to a non-collapsible
vascular compartment for cases of severe injuries in the pre-
hospital emergency setting when standard blood products are
unavailable and PIV infusion is difficult or unsuccessful. This
approach is useful in situations of mass casualty events, includ-
ing those involving pediatric casualties. The intraosseous ap-
proach was reported as a single case by Rottenstreich et al. [23].
Detailed information of such rare medical emergency events
can be found mostly in military databases for which access is
restricted. To the best of our knowledge, this retrospective anal-
ysis is the first multiple-casualty study to be published on this
treatment approach.

Using the IDF-TR registry, we identified 15 cases of FDP
infusion via the intraosseous approach and determined that
success rate using this combination was only 27%. The reason
for the high rate of technical complications appeared to be due
partially to the consistency of the FDP solution and partially to
the difficulties in establishing intraosseous access (23% failure
rate). Another contributing factor was the fact that these cas-
ues mostly occurred during multiple casualty events with many
cases with severe multi-organ involvement which poses another
level of difficulty.

According to the manufacturer’s specifications, the recon-
stituted lyophilized plasma product is delivered from a glass
bottle with the rate of infusion determined primarily by gravity.
This procedure precludes the care providers from applying ex-
ternal pressure to increase the plasma infusion rate. Therefore,
the pressure gradient is determined primarily by gravity with
respect to height of the bottle. We therefore suggest the recon-
stituted FDP be infused through a dedicated Y-tube similar to
that used for packed RBCs according to CPG and IDF TCCMB
guidelines [24,25].

LIMITATIONS

To the best of our knowledge this study is the first to evaluate
the effects of FDP infusion via intraosseous access in multiple
trauma victims. The issues raised in this study should be re-vis-
ited when additional subjects treated by this approach become
available. As a retrospective analysis, recall bias of the caregiv-
ers regarding the procedure may have resulted in errors.
CONCLUSIONS
Administration of FDP via intraosseous access in the field requires a high skill level. Therefore, care providers must undergo periodic refreshers on the proper preparation of FDP for infusion and the optimal techniques of handling and application of the intraosseous devices.

Correspondence
Dr. M. Rittblat
Trauma and Combat Medicine Branch, Surgeon General's Headquarters, Israel Defense Forces, Ramat Gan 526000, Israel
email: rittblat@gmail.com

References

Capsule

Symptoms and risk factors for long COVID in non-hospitalized adults

Subramanian and co-authors undertook a retrospective matched cohort study using a UK-based primary care database, Clinical Practice Research Datalink Aurum, to determine symptoms that are associated with confirmed SARS-CoV-2 infection beyond 12 weeks in non-hospitalized adults and the risk factors associated with developing persistent symptoms. The authors selected 486,149 adults with confirmed SARS-CoV-2 infection and 1,944,580 propensity score-matched adults with no recorded evidence of SARS-CoV-2 infection. A total of 62 symptoms were significantly associated with SARS-CoV-2 infection after 12 weeks. The largest adjusted hazard ratios (aHRs) were for anosmia (aHR 6.49, 95% confidence interval [95%CI] 5.02–8.39), hair loss (aHR 3.99, 95%CI 3.63–4.39), sneezing (aHR 2.77, 95%CI1.40–5.50), ejaculation difficulty (aHR 2.63, 95%CI1.61–4.28), and reduced libido (aHR 2.36, 95%CI 1.61–3.47). Among the cohort of patients infected with SARS-CoV-2, risk factors for long COVID included female sex, belonging to an ethnic minority, socioeconomic deprivation, smoking, obesity, and a wide range of co-morbidities. The risk of developing long COVID was also found to be increased along a gradient of decreasing age. SARS-CoV-2 infection is associated with a plethora of symptoms that are associated with a range of sociodemographic and clinical risk factors.

Nature Med 2022; 28: 1706
Eitan Israeli
A Randomized, Controlled, Blinded Evaluation of Augmenting Point-of-Care Ultrasound and Remote Telementored Ultrasound in Inexperienced Operators

The Rubrum Coelis Group*, and Jacob Chen MD MHA1,2,1, Alex Dobron BMedSc MOccH3, Akiva Esterson BEMS MD3,4, Lior Fuchs MD3,6, Elon Glassberg MD MHA MBA2,7,3, David Hoppenstein MBChB1,2, Regina Kalandarev-Wilson BEMS MD4, Itamar Netzer MD MBA2,20, Mor Nissan BEMS5, Rachelly Shifer Ovsiovich DMD6, Raphael Strugo MD6, Oren Wacht BEMS MHA PhD1,7, Chad G. Ball MD MSc FRCS FACS10,11, Naisan Garraway CD MD FRCS FACS12,13,14, Lawrence Gilman MD MMED FRCS FACS15, Andrew W. Kirkpatrick MD CD MHSc FRCS FACS10,11,16, Volker Kock CD MB14, Paul McBeth MD MASc FRCS(C)10, Jessica McKee BA MSc16, Juan Wachs PhD17, and Scott K. d’Amours MDCM FRCS FACS18,19

1Hospital Management, Meir Medical Center, Kfar Saba, Israel
2Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
3Israeli Defense Force Medical Corp, Jerusalem, Israel
4Department of Emergency Medicine, Rabin Medical Center (Beilinson Campus), Petah Tikva, Israel
5Intensive Care Unit, Soroka University Medical Center, Beer Sheva, Israel
6Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
7Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
8Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
9Magen David Adom EMS, Or Yehuda, Israel
10Regional Trauma Services, and the Department of Surgery, University of Calgary, Calgary, Alberta, Canada
11Foothills Medical Centre, Calgary, Alberta, Canada
12University of British Columbia, Vancouver, British Columbia, Canada
13Vancouver General Hospital, Vancouver, British Columbia, Canada
14Canadian Forces, Winnipeg, Manitoba, Canada
15University of Manitoba, Winnipeg, Manitoba, Canada
16TeleMentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group, Calgary, Alberta
17School of Industrial Engineering, Purdue University, West Lafayette, Indiana, USA
18University of New South Wales, Sydney, Australia
19Trauma and Acute Care Surgery, Liverpool Hospital, Sydney, Australia
20Clalit Health Services, Jerusalem, Israel
21Trauma and Combat Medicine Branch, Surgeon General’s Headquarters, Israel Defense Forces, Ramat Gan, Israel

ABSTRACT Background: Handheld ultrasound devices present an opportunity for prehospital sonographic assessment of trauma, even in the hands of novice operators commonly found in military, maritime, or other austere environments. However, the reliability of such point-of-care ultrasound (POCUS) examinations by novices is rightly questioned. A common strategy being examined to mitigate this reliability gap is remote mentoring by an expert.

Objectives: To assess the feasibility of utilizing POCUS in the hands of novice military or civilian emergency medicine service (EMS) providers, with and without the use of telementoring. To assess the mitigating or exacerbating effect telementoring may have on operator stress.

Methods: Thirty-seven inexperienced physicians and EMTs serving as first responders in military or civilian EMS were randomized to receive or not receive telementoring during three POCUS trials: live model, Simbionix trainer, and jugular phantom. Salivary cortisol was obtained before and after the trial. Heart rate variability monitoring was performed throughout the trial.

Results: There were no significant differences in clinical performance between the two groups. Iatrogenic complications of jugular venous catheterization were reduced by 26% in the telementored group (P < 0.001). Salivary cortisol levels dropped by 39% (P < 0.001) in the telementored group. Heart rate variability data also suggested mitigation of stress.

Conclusions: Telementoring of POCUS tasks was not found to improve performance by novices, but findings suggest that it may mitigate caregiver stress.

KEY WORDS: point-of-care ultrasound (POCUS), telemedicine, trauma, telementoring, ultrasound

*Rubrum Coelis is a joint Israel–Canadian group founded by Itamar Netzer, Elon Glassberg, and Andrew W. Kirkpatrick. Members who participated in this study are listed in alphabetical order.