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ABSTRACT A rise in the incidence of chronic health conditions, notably

heart failure, is expected due to demographic shifts. Such an
increase places an onerous burden on healthcare infrastruc-
tures, with recurring hospital admissions and heightened
mortality rates being prominent factors. Efficient chronic
disease management hinges on regular ambulatory care and
preemptive action. The application of intelligent computation-
al models is showing promise as a key resource in the ongoing
management of chronic diseases, particularly in forecasting
disease trajectory and informing timely interventions. In this
review, we explored a pioneering intelligent computational
model by Diagnostic Robotics, an Israeli start-up company.
This model uses data sourced from insurance claims to fore-
cast the progression of heart failure. The goal of the model is
to identify individuals at increased risk for heart failure, thus
enabling interventions to be initiated early, mitigating the risk
of disease worsening, and relieving the pressure on health-
care facilities, which will result in economic efficiencies.
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ne in six people in the United States presents with at

least one chronic disease, including heart failure, di-
abetes, or respiratory diseases. Chronic morbidity places
a substantial demand on healthcare infrastructure, incurs
significant financial expenditures, and is a major cause of
death. The demographic shift toward an older population
in the ensuing decades is anticipated to markedly elevate
the incidence of chronic diseases [1].

The trajectory of chronic diseases is critically depen-
dent on effective ambulatory management [2,3]. Optimal
proactive management is instrumental in maintaining
disease equilibrium, minimizing episodes of exacerba-
tion, and averting long-term deterioration [4]. In con-
trast, patients receiving suboptimal continuous care are
likely to experience frequent acute exacerbations and
a progressive decline in overall health compounded by

co-morbidities and functional impairments. This clinical
imbalance is further associated with escalated healthcare
costs, predominantly stemming from recurrent emergen-
cy department visits and hospitalizations, thus imposing
considerable strain on healthcare systems.

Effective allocation of ambulatory resources neces-
sitates precise identification of patients at elevated risk
of deterioration. Artificial intelligence (Al) models have
emerged as a potent tool for classifying patient risk lev-
els, due to their ability to consider many dynamic vari-
ables and embody the complex multifactorial influence
they have on disease progression [5].

Diagnostic Robotics, an Israeli start-up company, is at
the forefront of developing Al-based predictive models for
deterioration of patients with chronic diseases. These mod-
els are operational at a juncture where proactive interven-
tion can still significantly alter the disease course [6]. The
models utilize extensive data from insurance claims, in-
cluding ICD-10 diagnosis codes, current procedural termi-
nology procedures, and National Drug Code medications.
The company has developed several models pinpointing
individuals at the highest risk of future deterioration.
These models enable early initiation of intervention to
prevent the expected worsening in their condition, thereby
reducing healthcare system burdens and associated costs.

This review article will elaborate on one of the com-
pany's models, specifically designed for predicting the
progression of heart failure [7].

MACHINE LEARNING: A NEW ERA IN MEDICINE

The recent decade has witnessed a remarkable evolution in
Al, unlocking a spectrum of novel predictive possibilities
in the medical field [8]. This growth encompasses a broad
range of applications from disease risk prediction to cus-
tomizing treatments based on anticipated patient respons-
es. These advancements offer unprecedented opportunities
for both researchers and clinicians, enhancing patient care
quality and treatment efficacy. Machine learning, a pivotal
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sub-discipline within Al, leverages large-scale data sets to

identify complex patterns. Such models are increasingly

integral in facilitating decision-making processes within

patient-provider interactions [9].

Machine learning methods can be divided into three
subgroups:

& Supervised learning: This approach involves training
models on pre-labeled datasets, where the desired out-
come is predetermined. The objective is to enable these
models to classify new examples not included in the
initial training set.

= Unsupervised learning: This method autonomously un-
covers patterns or relationships in data without reliance
on pre-established labeling or categorization by human
intermediaries. Models of this type are pivotal in iden-
tifying novel risk factors and previously unrecognized
correlations among various medical conditions.

8 Reinforcement learning: In this subgroup, models do not
have access to all data upfront but rather learn through
trial and error. Functioning as an agent, the model in-
teracts with its environment gathering current informa-
tion and executing actions
aimed at maximizing re-
wards based on a defined
policy. In healthcare, these
models hold potential for
refining the optimization
of medication dosages or
other continuous interventions, playing a key role in the
advancement of personalized medicine.

The integration of machine learning techniques with
conventional medical research can lead to the develop-
ment of more precise and individualized models. These
models are particularly relevant for chronic diseases
like heart failure, the focus of the model discussed in
this review. The showcased model utilizes supervised
learning to achieve its predictive objectives.

HEART FAILURE

Chronic and acute heart failure represent principal contrib-
utors to disease burden and mortality, both in the United
States and globally. Projections indicate that by 2030, ap-
proximately 8 million individuals in the United States will
be afflicted with heart failure. Financial projections estimate
that heart failure-related expenses will amount to around
US$53.1 billion by 2030 in the United States alone [10].
The clinical progression of heart failure is characterized by
repeated chronic exacerbations and a gradual decline over
several years, culminating in cardiac failure. Proactive am-

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING
MODELS, SUCH AS THOSE CREATED BY DIAGNOSTIC
ROBOTICS, ARE KEY IN MANAGING CHRONIC DISEASES
LIKE HEART FAILURE, FORECASTING PROGRESSION,
AND ENABLING EARLY INTERVENTIONS TO REDUCE
HEALTHCARE STRAIN.

bulatory management has proven efficacious in sustaining
equilibrium in cardiac function, mitigating exacerbations,
and decelerating the progression of chronic deterioration.
Furthermore, proactive therapeutic strategies are instrumen-
tal in reducing emergency department visits and hospital
admissions, thereby diminishing the associated economic
impact and the strain on healthcare systems [2].

HEART FAILURE MODEL

Our objective was to develop an Al model that would
predict preventable hospital admissions, emergency de-
partment visits, and associated medical costs in heart fail-
ure patients. We compared the Al model with traditional
logistic regression modeling to evaluate the advantages
of machine learning and deep learning methodologies in
enhancing predictive accuracy. The model was developed
using 12 years of medical information based on medical
insurance claims data from a major insurance company in
the United States, which was collected between January
2006 and December 2017. The information was complete-
ly anonymized and contained the entire insurance variety
of the insurance company.
Diagnosis  codes, proce-
dures, and medications were
grouped into several accept-
ed categories with clinical
significance, such as diag-
nosis based on clinical clas-
sifications software (CCS) categories. Annual costs were
calculated as the total insurance payments for the patient
between 2016 and 2017. Extreme values from the 1st and
99th percentiles were limited by winsorization to reduce
the impact of outlier observations.

The data were divided into two periods: an observation
period before 1 January 2017 and a prediction period start-
ing after 1 January 2017. During the observation period,
adult patients (aged 18 and older) with heart failure who
were continuously insured between 2016 and 2017 and cov-
ered by a plan that also includes drug coverage were iden-
tified. Patients with active advanced malignancy during the
observation period were excluded from the sample popula-
tion to avoid overestimation of preventable visit costs.

Attention was centered on three binary outcomes. The
first was the occurrence of any preventable hospitaliza-
tion within a 6-month period from 1 January 2017. The
second outcome involved any preventable emergency
department (ED) visit within the same 6-month interval
based on the premise that shorter-term healthcare utiliza-
tion is more clinically actionable. The third outcome as-
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sessed was any preventable costs, defined as the expens-
es of preventable hospitalizations and ED visits within a
1-year period starting from 1 January 2017, a time frame
typically utilized in cost analysis studies.

To identify potentially preventable hospitalizations,
the Agency for Healthcare Research and Quality (AHRQ)
prevention quality indicators (PQI) was used [11]. PQIs
define potentially preventable hospitalizations, as hospital-
1zations related to chronic diseases such as heart failure, di-
abetes, hypertension, and asthma, which could be avoided
with good and timely outpatient care. This algorithm has
been both validated and utilized in the past [12]. To iden-
tify potentially preventable
ED visits, a combination of
two validated algorithms
was used. The first was an updated version of an algo-
rithm created by Johnson et al. [13,14] that uses principal
diagnosis codes to separate non-admitted ED visits into
four categories: non-emergent; emergent but primary care
treatable; emergent, ED care needed, but preventable; and
emergent, ED care needed, and not preventable. A second
procedure-based algorithm created by Ballard and co-au-
thors [15] was then used on the remaining unclassified vis-
its to capture additional preventable visits where there was
an absence of ED-indicating procedures.

Patient features or predictors were classified into two
primary categories [16]. The first category comprised
knowledge-driven features, manually compiled by do-
main experts. This set, consisting of 939 features, encap-
sulated demographic data
and medical background
information of the patients
such as episode counts and
trends, hospital length of
stay, readmission rates, costs, co-morbidity indicators,
major procedure indicators, and chronic medications.
Specific heart failure-related features included clinical
subtypes, episodes, procedures, and heart failure med-
ication adherence indicators. The second category en-
compassed data-driven features, which were machine
learning-based representations of each patient's medical
codes. They served as inputs for machine learning pre-
dictive models. These features were generated using the
word2vec algorithm, a natural language processing meth-
od that creates a feature vector (i.e., an array of numbers)
for each medical code in a patient's history. To form vec-
tors representing each patient, rather than a single code,
the sets of vectors for patients were summed. The results
were represented in two ways: as single patient-level vec-

ARTIFICIAL INTELLIGENCE ENABLES EARLY
INTERVENTIONS, THUS REDUCING HEALTHCARE STRAIN.

MACHINE LEARNING IN HEALTHCARE ALLOWS FOR
THE IDENTIFICATION OF COMPLEX PATTERNS IN
LARGE DATA SETS, LEADING TO MORE ACCURATE RISK
CLASSIFICATION AND PROACTIVE DISEASE MANAGEMENT.

tors (non-sequential vector inputs), containing the sum of
a patient's 11-year medical history and as temporal pa-
tient-level vectors (sequential vector inputs) comprising
36 consecutive monthly vectors with each vector sum-
ming the medical codes for one month.

Initially, the final sample was randomly divided into
three groups: training, validation, and testing, in a 7:2:1
ratio. The training sample was used to develop the model,
while the validation and testing samples were used for
model tuning and results presentation, respectively. Using
this data, five predictive models were created for compar-
ison: two conventional logistic regression (LR) models
with a limited feature set,
a more comprehensive LR
model incorporating the full
array of knowledge-driven features, and two machine
learning models employing varied methodologies. The
first traditional LR model encompassed basic attributes
like age, sex, and disease risk scores (CCS score [17] and
chronic condition indicator score [18]). The second tra-
ditional LR model expanded these scores by incorporat-
ing cost-related features (inpatient, outpatient specialists,
pharmacy, and primary care costs). These two models
have been widely utilized in the United States for creat-
ing risk scores in diagnosis-based and pharmacy-based
cost-prediction tools [19,20]. The enhanced LR model
also used the complete set of the 939 knowledge-driv-
en features. The two machine learning models were re-
garded as sequential or non-sequential, according to the
models' input features. Ma-
chine learning models using
non-sequential inputs (i.e.,
single patient-level vectors)
included feedforward neu-
ral network and gradient boosting model. Deep learning
models using sequential inputs (i.e. temporal patient-lev-
el vectors) included convolutional neural networks and
long-short term memory with an attention mechanism.
For each of the approaches the best performing models
were chosen based on the evaluation metrics [21,22].

The analysis of the results initially focused on com-
paring patient features across the three groups (training,
validation, testing) using chi-square tests and analysis of
variance (ANOVA), with statistical significance consid-
ered at P < 0.05. The second phase involved evaluating
the preventable hospitalizations and ED visits using the
precision at K method. This method considers the pa-
tients ranked highest by the model in the top K percent
(ranging from 1% to 10%), where precision is the posi-
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tive predictive value. The analysis of preventable costs
was performed using the cost capture metric, defined as
the ratio between the predicted preventable costs and the
actual preventable costs. This analysis considered the
costs in the top K%.

RESULTS

Of the five candidate modeling approaches evaluated, the
sequential deep learning models consistently provided
the best predictive performance across all three outcomes
and were closely followed by the non-sequential machine
learning models [Figure 1].

The models also revealed the strongest predictors for
each of the three outcomes: ED visits, preventable hos-
pitalizations, and potential cost savings. This calculation
was figured by taking predefined predictive variables
to compare patients and calculate each patient's relative
risk. Each of these variables was assigned a score be-
tween 0 to 100 according to its relative impact on the
patient's risk. Figure 2 shows the 15 variables found to
be the most influential on each of the model's three out-
comes: preventable hospitalizations, ED visits, and po-
tential cost savings.

Figure 1. Models' precision and cost capture at K%

CNN = convolutional neural networks, FNN = feedforward neural
network, GBM = gradient boosting model, LR = logistic regression,
LSTM = long-short term memory
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Figure 2. Top 15 predictors for preventable hospitalizations,
emergency department visits, and high costs
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In the United States, insurance companies actively
reach out to patients with heart failure after hospital-
ization and to patients with high treatment costs due to
the disease. These patients are recruited to join various
intervention programs designed to improve their health,
and thus, prevent further deteriorations leading to hos-
pitalization. The patients were divided into two groups.
The first group consisted of patients flagged by the in-
surance company's standard urgency predictor, and the
second comprised patients our model identified as high
risk. Notably, only 10% of the congestive heart fail-
ure patients flagged by our model were also identified
by the insurance company's health plan. Each of these
groups was then paired with a corresponding control
group, which was not proactively engaged despite be-
ing flagged by the systems. In a difference-in-difference
experiment, it was found that our model had the poten-
tial to lead to a 1.9-fold reduction in hospitalizations
compared to the traditional system of the insurance
company.

DISCUSSION

The application of Al and machine learning models en-
ables identification of patients at heightened risk of dis-
ease progression. These models can enable healthcare
providers to intervene earlier, alter the disease’s tra-
jectory, and reduce emergency department admissions
and hospitalizations. This proactive approach not only
enhances patient outcomes but also alleviates the bur-
den on healthcare systems and reduces costs, a crucial
aspect considering the escalating prevalence of chronic
diseases.

However, the adoption of such Al models in health-
care raises several considerations. The complexity and
often opaque nature of these models, commonly referred
to as the black box, where sometimes only the input and
output are understandable, present challenges in terms
of comprehending and trusting their decision-making
processes. This lack of transparency can be a barrier to
the wider acceptance and integration of Al in clinical set-
tings. Addressing these concerns is crucial for the future
development and implementation of Al in healthcare.

CONCLUSIONS

As Al continues to evolve, it will play an increasingly
vital role in healthcare by offering more accurate predic-
tions, personalized treatment plans, and improved patient
outcomes.

Correspondence

Dr. A. Peri
Diagnostic Robotics, Tel Aviv 6473926, Israel
Email: almap@diagnosticrobotics.com; alma.peri@gmail.com

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Ansah JP, Chiu CT. Projecting the chronic disease burden among the
adult population in the United States using a multi-state population
model. Front Public Health 2023; 10: 1082183.

Figueroa JE Joynt Maddox KE, Beaulieu N, Wild RC, Jha AK.
Concentration of potentially preventable spending among high-cost
Medicare subpopulations: an observational study. Ann Intern Med 2017;
167 (10): 706-13.

Joynt KE, Gawande AA, Orav EJ, Jha AK. Contribution of preventable
acute care spending to total spending for high-cost Medicare patients.
JAMA 2013; 309 (24): 2572-8.

Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA
Guideline for the management of heart failure: a report of the American
College of Cardiology/American Heart Association Joint Committee
on Clinical Practice Guidelines. Circulation 2022; 145 (18): ¢895-1032.

Javaid M, Haleem A, Pratap Singh R, Suman R, Rab S. Significance of
machine learning in healthcare: features, pillars and applications. Int J
Intell Netw 2022; 3: 58-73.

Diagnostic Robotics. Transforming Healthcare with AI: Empowering
Health Plans and Providers with Precise, Predictive Analytics. [Available
from https://www.diagnosticrobotics.com/]. [Accessed 30 June 2023].

Lewis M, Elad G, Beladev M, et al. Comparison of deep learning with
traditional models to predict preventable acute care use and spending
among heart failure patients. Sci Rep 2021; 11 (1): 1164.

Obermeyer Z, Emanuel EJ. Predicting the future-big data, machine
learning, and clinical medicine. N Engl ] Med 2016; 375 (13): 1216-9.

Deo RC. Machine learning in medicine. Circulation 2015; 132 (20):
1920-30.

Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure.
Nat Rev Cardiol 2016; 13 (6): 368-78.

Farquhar M. AHRQ Quality Indicators. In: Hughes RG, editor. Patient
Safety and Quality: An Evidence-Based Handbook for Nurses. Rockville
(MD): Agency for Healthcare Research and Quality (US); 2008 Apr.
Chapter 45. PMID: 21328764.

Jiang HJ, Russo CA, Barrett ML. Nationwide Frequency and Costs of
Potentially Preventable Hospitalizations, 2006. 2009 Apr. In: Healthcare
Cost and Utilization Project (HCUP) Statistical Briefs [Internet].
Rockville (MD): Agency for Healthcare Research and Quality (US);
2006 Feb-. Statistical Brief #72. PMID: 21510033.

Johnston KJ, Allen L, Melanson TA, Pitts SR. A “Patch” to the NYU
emergency department visit algorithm. Health Serv Res 2017; 52 (4):
1264-76.

Faculty & Research | NYU Wagner [Internet]. [ Available from https://wagner.
nyu.edu/faculty/billings/nyued-background]. [Accessed 1 July 2023].
Ballard DW, Price M, Fung V, et al. Validation of an algorithm for
categorizing the severity of hospital emergency department visits. Med
Care 2010; 48 (1): 58-63.

Billings J, Parikh N, Mijanovich T. Emergency department use: the New
York Story. Issue Brief (Commonw Fund) 2000; (434): 1-12.

Johnston KJ, Allen L, Melanson TA, Pitts SR. A "Patch" to the NYU

Emergency Department Visit Algorithm. Health Serv Res 2017; 52 (4):
1264-76.



IMAJ - VOL 26 - FEBRUARY 2024

REVIEW

18. Ballard DW, Price M, Fung V, et al. Validation of an algorithm for
categorizing the severity of hospital emergency department visits. Med
Care 2010; 48 (1): 58-63.

19. Fleishman JA, Cohen JW. Using information on clinical conditions to
predict high-cost patients. Health Serv Res 2010; 45: 532-52.

20. Centers for Medicare and Medicaid Services. March 31, 2016, HHS-
Operated Risk Adjustment Methodology Meeting. [Available from
https://www.cms.gov/cciio/resources/forms-reports-and-other-
resources/downloads/ra-march-31-white-paper-032416.pdf].

Mechanosensing by T cells

Tissue-resident CD8+ T (TRM) cells are constantly
surveilling organs and tissues for the presence of uninvited
microbes. Previous studies showed that TRM cell migration
is triggered by chemoattractant and adhesion molecule
signaling, which facilitates the rapid detection of infected
cells. More recent evidence indicated that TRM cells within
submandibular salivary glands display different motility
patterns exclusive of chemosensing. Ruef and co-authors
showed that submandibular salivary gland TRM cells

21. Cumming RB, Knutson D, Cameron BA, Brian D. A Comparative
Analysis of Claims-Based Methods of Health Risk Assessment for
Commercial Populations. Final report to the Society of Actuaries.
2002 May 24. [Available from https://www.soa.org/Files/Research/
Projects/2005-comp-analysis-methods-commercial-populations.
pdf].

22. Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: a survey of recent
advances in deep learning techniques for electronic health record
(EHR) analysis. IEEE ] Biomed Heal Inform 2018; 22: 1589-604.

from virally infected mice display spontaneous retrograde
F-actin flow as a means of force-generated translocation.
Similar patterns of locomotion were detected in TRM cells
from other exocrine glands and were dependent on the
sensing of changes in mechanical loads through signals
triggered by nuclear deformation.
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Prosopagnosia: face blindness and its association with neurological disorders

Josephs and Josephs assessed demographic, clinical,
and imaging characteristics, and neurological and
neuropathological disorders associated with a diagnosis of
prosopagnosia (loss of facial recognition) in a large cohort.
Patients were categorized as developmental versus
acquired. Those with acquired prosopagnosia were further
subdivided into degenerative versus non-degenerative,
based on neurological etiology. The authors assessed
regional involvement on 18F-fluorodeoxyglucose PET
and MRI of the right and left frontal, temporal, parietal,
and occipital lobes. The Intake and Referral Center at
the Mayo Clinic identified 487 patients with possible
prosopagnosia, of which 336 met study criteria for probable
or definite prosopagnosia. Ten patients, 80.0% male,
had developmental prosopagnosia including one with
Niemann-Pick type C, and another with a Forkhead-box G1
gene mutation. Of the 326 with acquired prosopagnosia,
235 (72.1%) were categorized as degenerative, 91
(27.9%) as non-degenerative. The most common
degenerative diagnoses were posterior cortical atrophy,
primary prosopagnosia syndrome, Alzheimer’s disease
dementia, and semantic dementia, with each diagnosis
accounting for > 10% of this group. The most common
non-degenerative diagnoses were infarcts (ischemic and

hemorrhagic), epilepsy-related, and primary brain tumors,
each accounting for > 10%. The authors identified a group
of patients with non-degenerative transient prosopagnosia
in which facial-recognition loss improved or resolved over
time. These patients had migraine-related prosopagnosia,
posterior reversible encephalopathy syndrome, delirium,
hypoxic encephalopathy, and ischemic infarcts. On
18F-fluorodeoxyglucose PET, the temporal lobes proved
to be the most frequently affected regions in 117 patients
with degenerative prosopagnosia, while in 82 patients
with non-degenerative prosopagnosia MRI revealed the
right temporal and right occipital lobes as most affected
by a focal lesion. The most common pathological
findings in those with degenerative prosopagnosia were
frontotemporal lobar degeneration with hippocampal
sclerosis, and mixed Alzheimer’s and Lewy body disease
pathology. In this large case series of patients diagnosed
with prosopagnosia, they observed that facial-recognition
loss occurs across a wide range of acquired degenerative
and non-degenerative neurological disorders, most
commonly in males with developmental prosopagnosia.
The right temporal and occipital lobes, and connecting
fusiform gyrus, are key areas.
Brain Commun 2024; https://doi.org/10.1093/braincomms/fcae002
Eitan Israeli
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